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Abstract

While transitioning to an IPv6-only communication, many devices
settled on a dual-stack setup. IPv4 and IPv6 are available to these
hosts for new connections. Happy Eyeballs (HE) describes a mech-
anism to prefer IPv6 for such hosts while ensuring a fast fallback
to IPv4 when IPv6 fails. The IETF is currently working on the third
version of HE. While the standards include recommendations for
HE parameter choices, it is up to the client and OS to implement
HE. In this paper, we investigate the state of HE in various clients,
particularly web browsers and recursive resolvers. We introduce a
framework to analyze and measure clients’ HE implementations
and parameter choices. According to our evaluation, only Safari
supports all HE features. Safari is also the only client implemen-
tation in our study that uses a dynamic IPv4 connection attempt
delay, a resolution delay, and interlaces addresses. We further show
that problems with the DNS A record lookup can even delay and
interrupt the network connectivity despite a fully functional IPv6
setup with Chrome and Firefox. We operate a publicly available
website (www.happy-eyeballs.net) which measures the browser’s
HE behavior, and we publish our testbed measurement framework.
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1 Introduction

The standardization of IPv6 [14] as a non-compatible protocol to
IPv4 resulted in a separation of the IP layer. Due to the IPv4 address
space exhaustion, IPv6 needs to be deployed and used more widely.
While the general development is towards dual-stack devices, the
non-compatibility imposes a decision on clients: Which address
family should be used? However, the Internet has yet to fully trans-
form [2, 13, 41], thus, the decision is nontrivial. To improve IPv6
usage without drastically influencing user experience, Happy Eye-
balls (HE) was designed [44]. Across two versions [34, 44], HE
provides suggestions for different parts of connections on how to
prefer IPv6 but fall back on IPv4 if necessary.

Since IPv6, new transport layer protocols have been standardized,
resulting in further separations on additional ISO/OSI stack layers.
QUIC [20] resulted in another transport protocol besides TCP and
the foundation for a new version of HTTP. Like IPv6, QUIC and
HTTP/3 are incompatible with existing alternatives, and clients
must decide which protocol to use. Therefore, as of November 2024,
a new version of HE [28] and a new IETF working group [26] are
proposed to provide guidance given the new complexity.

However, the existing HE ecosystem is not yet understood. All
major browsers have implemented HE [15] in theory. Nevertheless,
both RFCs only provide suggestions, and how browsers and other
clients, e.g., resolvers, implement HE has yet to be documented.
With the increasing complexity of the Internet and the attempt to
standardize a new, more complex version of HE, it is essential to
understand the current RFC implementations. Clients’ decisions
highly impact the user experience, the visibility of network issues,
and potential deployment errors.

Our main contributions in this paper are:

(i) An evaluation of HE implementations in nine browsers on
seven Operating Systems (OSes). We show that current implemen-
tations vary widely and are mostly limited to the first version of
HE (RFC6555 [44]).

(ii) A measurement of resolver IP selection and fallback behavior.
We observe that this critical network component generally does
not rely on HE style approaches in a dual-stack setup. Our results
show a wide variety of behavior with almost no operators using a
strict IPv6 version preference.

(iii) A local test framework that tests the HE implementations
of multiple clients across different versions.
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(iv) A web-based testing tool that emulates network delays
for all protocols HE considers. It is helpful to test browsers and
resolvers on different OSes. Moreover, anyone can use our public
tool to test the browser of their choice.

The website to access the tool, the source code for the test frame-
work, and the web-based tool are available at:

https://www.happy-eyeballs.net/

2 Happy Eyeballs

Happy Eyeballs (HE) aims to enhance the user experience by allow-
ing a fast fallback to IPv4 in cases of impaired IPv6 connectivity. The
IETF has standardized two HE versions [34, 44], and version 3 [28]
is in draft. This section introduces their algorithms (see Figure 1)
and explains their configuration parameters (see Table 1).

HEv1 (2012) [44], focuses on basic connection attempts from
a client to a server (gray area in Figure 1). The idea is to race
the connection establishment between IPv6 and IPv4 addresses
while prioritizing one protocol family based on the host’s address
selection policy. If DNS returns multiple records for each address
family, the host orders them according to its address selection policy.
HEv1 recommends falling back to IPv4 after the first IPv6 attempt,
even if multiple IPv6 addresses are available. If the initial IPv6 and
IPv4 connections fail, HEv1 does not provide further instructions on
the order of subsequent connection attempts, leaving this decision
up to the application developers.

The core parameter of HEv1 is the Connection Attempt Delay
(CAD), which is recommended to be within 150-250 ms (see Table 1).
If an application’s IPv6 connection is not successfully established
within this delay, the application should initiate a parallel IPv4
connection. HE largely avoids harming the network or servers, as
the second connection is only initiated if IPv6 appears slow or bro-
ken. Once one connection attempt succeeds, the client discards the
others and should cache the outcome for “the order of 10 min” [44].

DNS Resolver Client Server
[ — ] [ — ]
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.. _Server? A_ __
__ ServerINA_
Server IN AAAA Resolution delay ——
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Connection -
attempt delay IPv4
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Figure 1: Happy Eyeballs (v2): A client first resolves the
server’s name. Then it prioritizes the addresses based on a
local policy and proceeds to attempt to establish a connection
to the server. HEv1 only focuses on the connection establish-
ment, HEv2 additionally includes the name resolution.
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HEv2 (2017) [34] additionally considers DNS (the complete pro-
cess in Figure 1) and extends the description of the address selection.
In HEv2, a client should first issue a AAAA query, immediately fol-
lowed by an A query. If the client receives a response with AAAA
records first, it immediately starts a connection attempt to the tar-
get host using IPv6. If an A response arrives first, the application
should wait for a Resolution Delay (RD) of 50 ms that starts with
the reception of the A record (see Table 1). If the client receives a
AAAA response during the RD, a connection attempt via IPv6 is im-
mediately initiated. The client starts a connection attempt via IPv4
after the RD if there is no AAAA answer. This behavior prioritizes
IPv6 while minimizing the user-visible delay if it is impaired.

The next step in HEv2 is the address selection of the retrieved
addresses by using a predefined policy. In addition to IP address
family, clients can leverage knowledge about historical TCP round-
trip times and previously used addresses. Finally, the addresses
in the list are interlaced to alternate between IP address families.
The first address at the top of the list should be an IPv6 address to
maintain the IPv6 preference. The list may start with multiple IPv6
addresses. The number of those addresses is called the First Address
Family Count, which is recommended to be 1 or 2 for aggressively
favoring one family (see Table 1). Like in HEv1, the client then
proceeds to establish a connection using the previously selected
addresses. It uses the CAD between subsequent attempts to prevent
network congestion. HEv2 recommends 250 ms for a fixed CAD. For
history-inferred implementations, it defines an absolute minimum
CAD of 10 ms, recommends a minimum of 100 ms, and a maximum
CAD of 2 s (see Table 1).

HEvV3 As of 2025, the IETF is working on HEv3 [28]. HEv3 will
process existing SVCB or HTTPS DNS resource records [35, 47] to
support protocol discovery. The HEv3 address selection should
favor IP addresses with available TLS Encrypted ClientHello (ECH)
over QUIC over TCP. Besides those changes, HEv3 is currently
similar to HEv2, using the same parameters and recommendations.

3 Related Work

To the best of our knowledge, the actual implementation of HE in
clients has not been researched, except for initial articles during
the standardization of HEv1, e.g., by Aben [1] or Huston [15]. The
effects of HE have often been analyzed based on the performance of
IPv6 and IPv4 deployments on the Internet and the suggestions from
the HE RFCs [34, 44] (see Table 1). Bajpai and Schonwiélder [4, 5]
evaluated the latency towards services based on the protocol used
and inferred which protocol would be used by clients based on the
delays from RFCs. Pujol et al. [29] evaluated client and service IPv6
capabilities. Based on network metrics, they argued that Happy
Eyeballs is visible, but most clients should rely on IPv6 based on
suggested delays. However, our work shows that the suggestions
from RFCs are rarely used, and HE is only partially implemented.
Different studies [2, 13, 41] have shown a trend towards an IPv6-
only Internet, but essential components still lack full IPv6 support.
Therefore, HEv1 and v2, focusing on IPv6, are still important mech-
anisms for the quality of experience on the Internet.

While IPv6 deployment started slowly, Zirngibl et al. [45, 46]
have shown early and widespread QUIC deployment. Dong et al. [9]
have shown that HTTPS DNS resource records, including the first
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Table 1: Comparison of parameters defined for HEv1 [44], v2 [34] and the draft for v3 [28] as of April 2025.

Parameter HEv1 (2012) HEv2 (2017) HEv3 (2025-ongoing) Local tests  Web tests
Considered protocols IPv4, IPv6 IPv4, IPv6, DNS IPv4, IPv6, DNS, QUIC v v
DNS Records - AAAA, A SVCB, HTTPS, AAAA, A v v
Resolution Delay - 50 ms 50 ms v v
Address selection IPv6 once, then IPv4 alternating IP family and L4 protocol v -
Fixed Conn. Attempt Delay 150-250 ms 250 ms 250 ms v v
—Min/Rec./Max when dynamic - 10ms/100ms/ 2s 10ms/100ms/ 2s v v

ECH information, are available. Therefore, an early standardization
of HEv3 considering these possibilities is reasonable. However,
Dong et al. [9] show that most browsers do not fully use information
from HTTPS resource records as of 2024. Our work shows that most
browsers currently do not implement HEv2 yet. Foremski et al. [11]
analyze the effect of small negative caching values on clients using
HE and find domains with up to 90 % empty AAAA responses due to
HE. Similar to HEv3 drafts, Papastergiou et al. [24] suggested racing
different transport protocols alongside the IP layer. They implement
an example to show potential advantages, but do not consider
current HE implementations and whether they can be combined.
Our findings should be considered during the standardization and
evaluation of the Internet and the potential effects of HE in the
future. Especially if the overall algorithm gets more complex, clients
might drift farther from suggestions.

4 Measurement Methodology

We set up two test environments to get insight into how different
clients use HE: a local, fully controlled one and a web-based tool.
Our approach treats the software under test as a black box. There-
fore, it is usable with any software that can target arbitrary targets
(e.g., command line tools).

4.1 Measurement Targets

First, we define the measurement targets and our approach to eval-
uate these. HE defines Configurable Values. We evaluate HE clients
along these values. Table 1 shows these variables and the environ-
ment in which we measured them. The following describes how
we target the CAD, the RD, the address selection approach, and
the resolver behavior. The observation method depends on the
measurement setup and is described in Section 4.3.

(i) Connection Attempt Delay: The CAD is the time the client
waits for an IPv6 response before initiating a parallel connection
attempt via IPv4. To obtain the CAD, we configure a domain name
to resolve to an IPv4 and IPv6 address. We simulate a slower IPv6
connection by delaying IPv6 packets using tc-netem [21] on the
server side. If the introduced delay exceeds the client’s CAD, it
should initiate an IPv4 connection. We can observe these attempts
and infer the CAD.

(ii) Resolution Delay: The RD is the delay the client waits for
an AAAA (IPv6 address record) query response after it obtained the
A (IPv4 address record) query response. We use a custom authori-
tative name server implementation to delay responses according
to encoded test parameters. These parameters include the delay,

the resource record type to delay, and a nonce to prevent caching
effects. This approach allows a variety of different test setups with
a single server deployment.

(iii) Address Selection: Our DNS-based measurements show
whether both record types are queried and if the client has any
HE CAD configured. We extend this test case to include multiple
addresses per IP family to evaluate the destination address selection
by clients. We use addresses that do not respond at all, and thus
should trigger the fallback mechanism to other addresses.

4.2 Recursive Resolver:

The HE standardization primarily targets end-user client software,
and as part of these mainly browser maintainers are involved. While
the specifics of the HE standardization (e.g., recommended delay
values) are not generalizable, we can still apply our measurement
setup to other protocols and applications to learn about their IP
version selection and fallback behavior. The results can then be in-
terpreted in the context of the analyzed use case. Our measurement
approach can be expanded to include transport protocols in the
future. The DELEG working group [16] discusses the indication of
these protocols to resolvers.

In this work, we will look at the behavior of DNS resolver soft-
ware. Recursive resolvers play a central role in Internet communi-
cation. They must also decide which IP version to use during the
iterative resolution process. At each delegation to a new zone, and
thus usually a new authoritative name server, the recursive resolver
decides if and how to prefer IPv6 over IPv4 to connect to the zone’s
name server.

Therefore, we extended our measurement setup and applied it
to the resolver software to check their IP preference behavior in
general and if they use HE style approaches. We need to apply
our traffic shaping to the authoritative name servers serving our
zones to enable such measurements. Instead of different domain
names inside a single zone, we created entirely different zones for
each measured delay. Our traffic shaping is applied to the name
server records (in case of RD measurements) and the corresponding
IP addresses (for CAD measurements). Recursive resolvers often
include performance metrics when deciding which name server
and IP address to use. Our authoritative IP addresses are not used by
any zone outside our measurement campaign. Additionally, we use
unique zone apexes and unique authoritative name server names
to reduce the impact of such caching effects.
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4.3 Measurement Setups

We implement these test cases in two different setups:

(i) Local Testbed Framework: We set up a local testbed of two
directly connected hosts (client and server) to eliminate any net-
work effects in our measurements. This setup is an ideal scenario
where IPv4 and IPv6 connections between two dual-stacked hosts
experience equal delays. We use a separate interface to set up and
send instructions to the hosts.

A controller process runs our framework process to initiate
measurement runs. Our framework is extendable, as the test cases
and clients to test are defined outside the framework’s code (see
App. Figure 3). They consist of a config file instructing the frame-
work which executables to run when. For example, to set up our
CAD test, we start an NGINX instance [22] and an authoritative
DNS server and configure delays using tc-netem on the server host.
On the client host, we start a packet capture, the client application,
and initiate the request. Setup stages can be executed at each test
run configuration (e.g., delay), or only at the start and end of a test
case. The test configuration also supports defining the ranges and
intervals for the test run configuration variable to execute coarse
initial runs and fine-grained follow-ups. The clients are defined
separately from the test cases and start via predefined script calls,
which each client must implement independently. Our setup uses
containers to start with a clean client state and use Selenium [36]
to control browsers. After each test case conﬁguration, we reset the
client to a predefined state (e.g., drop and create a new container)
to prevent any caching effects.

We determine the CAD by measuring the time between the first
IPv6 packet and the first IPv4 packet observed in the client’s packet
capture. The local testbed’s accuracy depends on the packet capture
time stamping accuracy, which is usually below a millisecond [12].
Therefore, this method gives us the needed accuracy for the CAD
value as real-world connections usually expose larger jitter than
our measurement accuracy.

(if) Web-based Testing Tool: We created a web-based tool to enable
tests from a broader set of browsers in combination with different
operating systems. This tool also allows testing on devices that
cannot be directly attached to a server and remotely instructed to
perform specific tasks. The results can be used to validate our local
testbed measurements regarding real-world network conditions.

We evaluate results solely from the client side. Our web server
returns the client’s source address in its response, and the client
uses the response to determine the used IP version. The nature
of this web deployment does not allow resetting client and server
configurations after each measurement. Therefore, we use a fixed
set of 18 delays between 0 and 5 s (see App. Figure 4a). Each de-
lay has dedicated IPv4 and IPv6 addresses assigned, and we delay
IPv6 traffic accordingly. Therefore, the CAD can only be deter-
mined to be in the interval of the last delay using IPv6 and the
first delay using IPv4, e.g., the CAD for Safari in App. Figure 4a is
CAD € (200, 250]. Nevertheless, it is valuable to obtain results in
actual network conditions. Some clients adjust their behavior in
non-lab conditions, significantly influencing observed results (see
Section 5.1). Furthermore, we associate a dedicated domain to each
delay-address pair to prevent caching. We reuse our custom DNS
setup with a publicly resolvable zone.
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Table 2: HE feature evaluation of client applications with
our local and web-based measurement tools and their
consistency between the measurement methods.
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* Offers a flag to enable feature (HEv3 flag)

5 Evaluation

We evaluate our measurement targets based on results obtained via
the local testbed and the web-based testing tool.

5.1 Connection Attempt Delay

Our local testbed includes Mozilla Firefox, Google Chrome, Mi-
crosoft Edge, and Chromium. All browsers were tested on the latest
Ubuntu LTS image (24.04.1). We included browser versions as old
as January 2021. Additionally, we measured Safari (17.5) on MacOS.
This is a set of the most used browsers [37, 43] and, thus, a solid base
for our web-based evaluation. Moreover, most alternative browsers
are Chromium-based, and they behave the same. In addition to
browsers, we included tests for curl [38] and wget [30] as popular
command-line tools.

Initial measurements using coarse delay configurations indicate
the rough time interval of the configured CAD. Except for Safari,
all clients stayed within 300 ms. Our fine-grained delay configu-
rations perform measurements from 0 to 400 ms in 5 ms steps. It
is important to note that any local measurement that uses a delay
larger than the client’s CAD also observes the CAD value in the
packet capture. Our coarse evaluation measures the CAD at least
20 times per client and testbed run.

Additionally, we collected 161 web-based measurement results
with at least ten repetitions per delay configuration. Results cover
nine browsers in 22 versions run on seven operating systems. That
amounts to a total of 33 different combinations (see Table 5).

Table 2 provides an overview of our results. While all client
applications prefer IPv6 if both versions are offered, wget (1.21.3)
does not implement any fallback mechanism and thus does not im-
plement HE. wget fails without using the provided IPv4 addresses
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wget (1.21.3 02-2022)
curl (7.88.1 02-2023)
Firefox (96.0 01-2022)
Firefox (109.0 01-2023)
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Firefox (132.0 10-2024)
Edge (90.0 04-2021)
Edge (96.0 11-2021)
Edge (108.0 12-2022)
Edge (120.0 12-2023)
Edge (130.0 10-2024)
Chromium (130.0 10-2024)
Chrome (88.0 01-2021)
Chrome (96.0 11-2021)
Chrome (108.0 11-2022)
Chrome (120.0 11-2023)
Chrome (130.0 10-2024)

Py

0 100 200 300 400
W [Pv6 IPv4 Configured IPv6 delay [ms]
Figure 2: IP address family of established connection as mea-
sured on our local testbed setup. We omitted Safari, which
has a CAD of 2s to improve the visibility of the remaining
results.

for delays larger than its timeout. Figure 2 shows the address fam-
ily of the established connection at each configured delay for all
browsers and versions included in our local testbed measurement.
The observed CAD obtained from the packet captures overlaps
with the largest delay on an established connection via IPv6. Only
Firefox has a few outliers, but the median and standard deviation
are within a ms of the obtained value.

All Chromium-based browsers use a CAD of 300 ms. This value
can also be found in its code [3]. Measurement results collected via
our web-based tool for these browsers (including mobile variants)
validate these observations. The command-line tool curl uses the
smallest CAD of 200 ms (see code [39, 40]). Firefox follows the RFC
recommendation of 250 ms, but has a few outliers where it waits
longer than 250 ms for the IPv6 connection establishment.

In contrast to other browsers that matched our local measure-
ments, we observed a wide range of CAD values for Safari [32]
in our web-based measurements. While local measurements were
consistent at 2 s, they ranged from 50 ms up to 5s on the web, indi-
cating a dynamic application of CAD. Moreover, Safari also showed
a unique behavior. While other web-based measurements usually
show a clear picture of IPv6 usage up until the CAD value, the
measurement results with Safari did not. This behavior manifested
in repetitions where it used IPv4 at a smaller delay and IPv6 again
for larger delays. Firefox and Chrome also had a few test runs with
such inconsistencies, but these only manifested in a maximum of
two out of ten test repetitions. At the same time, Safari exposed
them between six and ten times. To investigate this behavior we
conducted web-based measurements with different network con-
ditions. Neither the network context (cable vs wireless, the access
network, parallel network activity), nor the focus of the application
window (MacOS and Safari can throttle background tabs and win-
dows), nor the power supply did have any noticeable impact on the
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reproducibility of results. Mobile Safari measurements report vary-
ing CAD values and inconsistency. Nevertheless, the CAD never
rose beyond 1 s for IPv6 connections on mobile phones with iOS.
We assume a preference towards lower values on mobile devices.
Our web-based measurements can help to evaluate these effects in
more detail with different clients and conditions.

Moreover, Apple announced and deployed iCloud Private Re-
lay (iCPR), a privacy-preserving proxying service, in December
2021 [17, 31]. As part of iCPR, Safari can relay traffic via an egress
operator using MASQUE proxying [27, 33]. Connections via iCPR
show completely different HE behavior compared to Safari. The
reason is that Safari does not create an IP tunnel via the relay net-
work but only informs the egress node about the server name it
wants to connect to. The egress node handles the DNS resolution
and the stack up to the transport protocol headers of TCP and UDP.
Therefore, measurements via iCPR show how the egress operators
implement HE. Akamai and Cloudflare egress nodes use a CAD
of 150 ms and 200 ms, respectively. We cannot actively select the
egress node provider and Fastly did not appear as a provider in
our measurements. This example shows that local testbed measure-
ments can provide an overview of which features are deployed, but
a web-based measurement campaign must be used to validate the
results to cover complex real-world scenarios.

5.2 Resolution Delay

The RD test case delays the AAAA record to observe how clients
implement the RD. Already, the testbed measurement results show
that only Safari actually implements it. We found Safari to be using
the RFC recommendation of 50 ms. In their default state, Chromium-
based browsers and Firefox depend on the resolver’s timeout. They
do not apply any DNS resolution timeout on their own.

The missing timeout leads to the delegation of timeouts to re-
solvers. Only after the AAAA query hits the resolver’s timeout do
these browsers initiate the IPv4 connection. Similar observations
are valid for curl and wget.

Usually, in the context of HE, IPv4 is considered the stable fall-
back, while IPv6 is the new variant that can break. In reality, IPv4
is not 100 % reliable, and queries for A records are also sent via IPv6.
Therefore, we test how clients react to delayed A query responses.
To our astonishment, while all clients continued to prefer IPv6, all
but Safari always waited for the A response to arrive. Only then
would they initiate the IPv6 connection to the target host, although
the AAAA record was not delayed. This behavior resulted in Chrome
and Firefox completely failing connections in case of high delays
with some resolver configurations. Since April 2024, Chromium
provides a feature flag (HEv3) that adds RD and gets rid of this
problematic behavior [18, 19].

Similar to the CAD evaluation, we collected web-based measure-
ments with Safari via iCPR. We observed that Cloudflare egress
nodes use IPv6 up until a delay of 1.75 s. Akamai egress nodes use
a timeout of 400 ms. Both operators use the same timeout for A and
AAAA record queries. These properties are far from the behavior of
Safari without iCPR. Therefore, iCPR has the potential to negatively
influence the user experience if issues on the resolution path exist.

The address selection is another measure standardized as part of
HE. We measured it with a domain name with 10 A and AAAA records.
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Table 3: Evaluation of resolver IPv6 usage as ob-
served on the authoritative name server. For open
resolvers, the observed IPv6 delay is a lower bound.

AAAA IPv6 Max. IPv6 #IPv6
Service Query Share Delay Used Packets
BIND © 100.0 % 800 ms 1
Unbound . 43.8% 376 ms 2
Knot Resolver © 27.9% 400 ms 2
DNS.sb © 0.0% - -
Google P. DNS U 0.0% - -
DNS0.EU . 9.5% - 2
NextDNS (] 8.9% 200 ms 1
Quad 101 . 10.0 % 400 ms 1
114DNS (] 11.1% 600 ms 1
Cloudflare . 11.1% 500 ms 2
Verisign P. DNS L] 15.3% 250 ms 1
Yandex . 17.4% 300 ms 6
H-MSK-IX [ ] 20.5% 600 ms 2
MSK-IX o 22.1% 600 ms 2
Quad9 DNS L] 34.2 % 1250 ms 2
OpenDNS L] 100.0 % 50 ms 1

® Sends AAAA before A; © Sends AAAA after A; D Sends AAAA after query to
IPv4 auth. name server; ® Sends either AAAA or A but not both
! Cannot determine the delay due to parallel queries on IPv4 and IPv6.

All records pointed to unresponsive addresses. In Table 2, we list
the number of addresses per IP family used for connection attempts
by the clients. Again, only Safari shows a visible address selection
behavior (see App. Figure 5). Others only perform a simple fallback
to IPv4 and stop after that, ignoring other records’ addresses.

5.3 Recursive Resolvers

Most browsers do not implement RD and rely on the resolver’s
timeout. To understand how and if resolvers implement some ver-
sion of IPv6 version preference, we evaluate the behavior towards
authoritative name servers.

We focus on three popular recursive resolvers for our local mea-
surements: BIND 9 [6], Unbound [23], and Knot resolver [7]. Fur-
thermore, we issued queries to 82 IP addresses of 17 popular open
resolvers (see App. Table 4). While our sample does not cover ISP-
operated resolvers, it shows the differences that resolvers can ex-
pose. Moreover, we provide a web-based testing tool that allows
users to check their configured resolver. Our analysis only includes
resolvers that can resolve zones with IPv6-only authoritative name
servers. Hurricane Electric, Lumen (Level3), Dyn, and G-Core are
not able to resolve domain names with an IPv6-only delegation,
leaving us with 13 to analyze. For Quad 101, only the IPv6 addresses
successfully connect to our IPv6-only name servers. One dns@.eu
IP address did not provide reliable IPv6-only resolution.

To connect to our IPv6 addresses, the resolvers need to obtain the
address through glue records or name resolution. All operators sent
AAAA queries for the name server names. Even when we include glue
records, 12 out of 13 public services and the BIND resolver requested
the AAAA record before issuing the query to the authoritative name
server. Only Google Public DNS does not issue any AAAA query
before sending the query to the authoritative name server. The Knot

Patrick Sattler, Matthias Kirstein, Lars Wistrich, Johannes Zirngibl, and Georg Carle

resolver does send out either A or AAAA queries for the delegated
name server name but never both.

11 open resolvers and Unbound sent the AAAA record before the A
record, a behavior defined in RFC 8305 [34]. DNS.sb, Google Public
DNS, and the BIND resolver query the A record first. While packet
reordering could influence our results, the results were consistent
over different test runs and delay configurations.

When the resolver has both addresses available, it needs to select
an address for the next iterative query. BIND performs classic HE
IP version preference and always prefers IPv6. Knot and Unbound
use IPv6 in 25 % and 50 % respectively (see Table 3). We observe a
CAD of 800 ms for BIND, 400 ms for Knot, and 376 ms for Unbound.
While BIND and Knot are consistently falling back to IPv4 addresses,
Unbound retries the IPv6 address in 44 % of the times and increases
the CAD to 1128 ms due to an exponential backoff [42].

Except for Google Public DNS and DNS.sb, all public operators
use the IPv6 name server address at least once. Only OpenDNS
always tries to connect via IPv6 first and falls back to IPv4 after
50 ms. The other operators do not perform any type of HE style
behavior. Nine operators do not use IP protocol version interleaving
and send up to six queries to the IPv6 address (Yandex). We never
see DNS0.EU switching IP protocol version when retrying, but it
sticks to the IP version initially chosen and fails at some point.

6 Discussion and Conclusion

We systematically approach the measurement of the client’s Happy
Eyeballs feature implementations. A local testbed allows us to per-
form in-depth measurements in a controlled setup. The web-based
measurements can validate local results and cover more clients in
actual network conditions. All widely used browsers prefer IPv6
connections when possible. Except for Safari, which employs a
dynamic, unpredictable approach, the observed CAD values are
within a 50 ms interval of the 250 ms RFC suggestion.

Only Safari implements a RD and address selection mechanisms,
thus, HEv2. In contrast, Chromium-based browsers and Firefox
delay IPv6 connection initialization until the corresponding DNS A
record arrives, even though IPv6 address information is available
and preferred. We suggest implementing a timeout for DNS queries
for all clients, even when HE is not implemented. The current
situation is even worse from an IPv6 deployment perspective, as
slow A queries also slow down IPv6, even if it is not at fault.

Moreover, not only the browser software itself but also new
proxying techniques can impact the HE behavior. This result shows
the usefulness of our web-based measurement tool in understanding
the ecosystem in different scenarios, how clients with different
configurations currently behave, and how future updates (e.g., the
Chrome feature flag) change behavior. For example, we determined
that if iCPR is enabled, Safari users lose RD and address selection
features through our web test.

Due to the reliance on resolvers and their significant role, we in-
cluded them in our analysis. Only single instances and applications
follow an HE-style approach. We suggest starting dedicated dis-
cussions to develop recommendations on the behavior of protocol
preference for critical Internet infrastructure clients, such as DNS
resolvers. You can find our web-based tool and our measurement
tools’ source code on: https://www.happy-eyeballs.net/.


https://www.happy-eyeballs.net/
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Figure 3: Overview of the local testbed and its components and configurations (see Section 4).
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Figure 4: Screenshots of our web-based testing tool website
taken from measurements with Safari (see Section 4). We
make the tool publicly available on accept to allow individu-
als to easily test and understand their client behavior.

measurement to get a better picture. This includes the client’s user
agent and plattform as provided by the browser and the client net-
work’s Autonomous System (AS) number which are not considered
personal identifiable information. We need this information to cor-
rectly attribute results to applications, OSes, and access networks.
The findings for Safari with iCloud Private Relay were only possi-
ble by including the AS information. Nevertheless, we offer users
the option to not submit results to our study and hence no data is
collected while using the tool.

B Framework Details

Figure 3 provides an overview about our Local Testbed Framework as
described in Section 4. Test cases, the host setup and tested clients
are specified and adapted in one configuration. A test runner sets
up the client and server node accordingly and iterates through all
test cases, configurations and clients.

Figure 4 shows an example result of our CAD and RD web-based
testing tool as described in Section 4. It allows users testing their
individual setup (browser + resolver + OS) and their HE capabilities.
The source code for the test framework and the web-based tool
are publicly available. Both tools include a complete Ansible setup
script. We will make the tool publicly accessible if the paper is
accepted.

C Open Resolvers
We tested the HE capabilities of open resolvers listed in Table 4.

We selected these from a publicly available list of open resolvers'.
Results regarding the capabilities of these resolvers are described

in Section 5.3.

1https:// gist.github.com/mutin-sa/5dcbd35ee436eb629db7872581093bc5
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Figure 5: Address selection based on an internal priority list.
The plot shows the address family used by browsers at the
n-th connection attempt.

Table 5: Operating systems and browsers for which we ob-
tained web-based measurements. This information was ex-
tracted from the user agent. Therefore, some entries do not
contain an OS version.

oS Browser
Name Version Browser Browser Version
Android 10 Chrome Mobile 127.0.0
Android 10 Chrome Mobile 130.0.0
Android 10  Firefox Mobile 131.0
Android 10 Samsung Internet 26.0
Android 14  Firefox Mobile 125.0
Android 14  Firefox Mobile 128.0
Android 14  Firefox Mobile 131.0
Chrome OS  14541.0.0 Chrome 129.0.0
Linux Chrome 130.0.0
Linux Firefox 128.0
Linux Firefox 130.0
Linux Firefox 131.0
Linux Firefox 132.0
Mac OS X 10.15 Firefox 128.0
Mac OS X 10.15 Firefox 131.0
Mac OS X 10.15 Firefox 132.0
Mac OS X 10.15.7 Chrome 127.0.0
Mac OS X 10.15.7 Chrome 129.0.0
Mac OS X 10.15.7 Chrome 130.0.0
Mac OS X 10.15.7 Opera 114.0.0
Mac OS X 10.15.7  Safari 17.4.1
Mac OS X 10.15.7 Safari 17.5
Mac OS X 10.15.7 Safari 17.6
Mac OS X 10.15.7 Safari 18.0.1
Ubuntu Firefox 128.0
Ubuntu Firefox 131.0
Windows 10 Chrome 127.0.0
Windows 10 Edge 130.0.0
Windows 10  Firefox 130.0
i0S 17.5.1 Mobile Safari 17.5
i0S 17.6  Mobile Safari 17.6
i0S 17.6.1 Mobile Safari 17.6

i0S 18.1 Mobile Safari 18.1
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Table 4: Tested recursive resolvers. Hurricane Electric, Lu-
men (Level3), Dyn, and G-Core do not support IPv6 on the
resolution path and are therefore not included in our evalua-
tion presented in Section 5.3.

# Addrs.

Service IPv4 IPv6
DNS.sb 2

Google P. DNS 2 2
DNS0.EU 2 2
114DNS 2 0
Cloudflare 2 2
H-MSK-IX 2 2
MSK-IX 2 2
NextDNS 2 2
OpenDNS 6 6
Quad 101 2 2
Quad9 DNS 6 6
Verisign P. DNS 2 2
Yandex 2 2
G-Core 2 2
DYN 2 0
Lumen (Level3) 4 0
HE 4 4

114DNS does only offer IPv4 resolver addresses but is capable
of resolving domain names on IPv6-only resolution paths. The
WhoAml tool by Akamai (whoami.ds.akahelp.net) shows an ad-
dress in a different AS. Therefore, we assume it is a forwarder and
uses an IPv6-capable recursive resolver.

D Address Selection

The main findings regarding address selection are described in
Section 5.2. The following provides further information on the
actually visible selection from different applications. Figure 5 plots
the address family used by browsers on parallel connection attempts
when the browser hits its configured CAD. We configured a total
of ten addresses per family which do not offer a service but all time
out. Only Safari retries as often as there are addresses. All others
which implement the CAD only try one IPv6 and one IPv4 address.
This is the described behavior in HEv1.

Safari does use a First Address Family Count of two and prefers
IPv6. Safari’s interleaving strategy is to attempt one IPv4 address
after the two IPv6 addresses. Then it continues with all remaining
IPv6 addresses and only after the remaining IPv4 addresses are
tried.

E Measured Browser and OS Versions

Table 5 contains the browser versions and the operating systems
running these browsers used in our web-based measurements. We
extract this information from the browser provided user agent
string. Linux and Ubuntu do not provide the OS version in the user
agent.


whoami.ds.akahelp.net
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