Check for
Updates

Gotta Query ’Em All, Again! Repeatable Name Resolution with
Full Dependency Provenance

Johannes Naab
naab@net.in.tum.de
Technical University of Munich

Germany
Stephan Guinther
guenther@tum.de
Technical University of Munich
Germany

ABSTRACT

Common DNS resolvers are optimized for query latency but are
not designed to expose the internal dependencies and structures
within the DNS. This makes it difficult to investigate DNS setups,
detect errors and misconfigurations, and determine their impact on
users.

In order to reliably track the internal, potentially cyclic depen-
dencies within the DNS, we propose to split the dependency graph
into strongly connected components. By querying all authorita-
tive servers and considering differences in order and timing for
repeated runs, we are able to resolve domain names in a repeatable
and traceable manner. We validate this approach by introducing a
test methodology that allows re-running the resolver against previ-
ously recorded data. This data can be used to further study various
aspects of global DNS deployments. We provide an example scan
with 1.6 M domains on https://tcb-resolve.github.io/.

CCS CONCEPTS

« Networks — Naming and addressing; Network measure-
ment; Logical / virtual topologies.

KEYWORDS

DNS, Domain Name System, Resolver, Dependency Graph, Internet
Measurement

ACM Reference Format:

Johannes Naab, Patrick Sattler, Johannes Zirngibl, Stephan Giinther, and Georg
Carle. 2023. Gotta Query 'Em All, Again! Repeatable Name Resolution with
Full Dependency Provenance. In Applied Networking Research Workshop
(ANRW °23), July 22-28, 2023, San Francisco, CA, USA. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3606464.3606478

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ANRW 23, July 22-28, 2023, San Francisco, CA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0274-7/23/07...$15.00
https://doi.org/10.1145/3606464.3606478

Patrick Sattler
sattler@net.in.tum.de
Technical University of Munich
Germany

34

Johannes Zirngibl
zirngibl@net.in.tum.de
Technical University of Munich
Germany

Georg Carle
carle@net.in.tum.de
Technical University of Munich
Germany

1 INTRODUCTION

The DNS is essential to the functioning of the Internet. Users mostly
rely on standard resolvers providing an easy interface to resolve
domain names. The full inner workings of the DNS and their poten-
tial impact on the name resolution are hidden behind this interface.
Resolvers commonly try to optimize the end-to-end latency for
queries and assume properly configured zones. Caching and multi-
ple authoritative servers help to ensure availability.

However, the same features complicate debugging DNS setups
and errors. A large part of the complexity in investigating those
setups stems from the configuration of authoritative servers as
FQDNSs, which themselves need to be resolved using DNS. Resolvers
need to rely on the root hints, glue data, and caches to overcome this
chicken-and-egg problem. Multiple authoritative servers and the
need to synchronize a zone’s NS records with its parent introduce
multiple data copies. While those copies should match each other,
in practice there will be some deviations. To reliably investigate
DNS setups, errors, misconfiguration, and their impact on users, it
is necessary to consider the entire data set.

In this paper, we present an approach to resolve domain names
that takes their entire dependency graph into account. By re-running
the resolution against previously recorded data, we can ensure that
we achieve a consistent result and do not omit any results that po-
tentially influence the resolution. Our proposed approach achieves
the following goals:

(i) It discovers all reasonable resolution paths for a domain. By
providing provenance of the resolution, we can later investi-
gate why certain queries were made.

(ii) It checks the different copies of the (same) data within the
DNS. Therefore, we always query all authoritative servers
within each zone and resolve glue records with authoritative
data.

(iii) This allows the resolution process to be verified using a de-
terministic and repeatable set of queries.

(iv) The approach is designed to be fair and efficient. We only issue
queries that are likely going to be answered, use rate limiting,
and take special care to avoid impacting central services.

The paper is structured as follows: Section 2 gives a motivating
example and shows how strongly connected components can be
used to structure the resolution. The name resolution process is
described in Section 3. The testing and validation of our approach

https://orcid.org/0000-0002-8808-7643
https://orcid.org/0000-0001-9375-3113
https://orcid.org/0000-0002-2918-016X
https://orcid.org/0000-0001-5581-5192
https://orcid.org/0000-0002-2347-1839
https://tcb-resolve.github.io/
https://doi.org/10.1145/3606464.3606478
https://doi.org/10.1145/3606464.3606478
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3606464.3606478&domain=pdf&date_stamp=2023-07-22

ANRW 23, July 22-28, 2023, San Francisco, CA, USA

is shown in Section 4. We conclude by investigating related work
and use cases in Section 5.

2 BACKGROUND

We follow the naming conventions of RFC 8499. DNS data is struc-
tured into zones hosted on authoritative servers. As an example,
we consider the zone configurations necessary to resolve tum.de
as shown in Figure 1. A zone configures its authoritative servers
with NS records pointing to domain names (1). These NS records
add a dependency to the zone authoritative for that name. A zone is
reached by a delegation configured in its parent (2), which is in turn
another dependency of the zone. Those FQDNs need to be resolved
in their respective zones (3). If the NS records in a delegation point
into their own zone (4), glue records are necessary (5).

If we keep following those dependencies, we end up with the
dependency graph shown in Figure 2. The entire set of dependencies
(including the individual servers which are omitted in the figure) is
called the trusted computing base (TCB). In the dependency graph
we find certain sets of (indirectly) interdependent zones. One such
set in our example is 1rz.de, 1rz.bayern, and lrz.eu. A set of
interdependent zones represent a strongly connected component
(SCC).

The meaning of an SCC within the DNS is that specific query re-
sults within one zone context can (indirectly) impact the results for
any other zone within the SCC, including itself. Queries that impact
the SCC are the discovery of authoritative servers in NS records
and the corresponding address resolution records. For instance, by
resolving the A records for all known authoritative servers in a
zone, we potentially discover a new IP address that needs to be
added to the set of authoritative servers in those zones. If this new
authoritative server has, for instance, an outdated copy of the zone
data, it can introduce further dependencies into the graph. Using
these SCCs, we can structure the resolution process so that no
dependency remains hidden.

Beyond the direct dependencies for tum.de, Figure 2 shows that
the SCC for the root zone additionally contains the net and com zone
as well as root-servers.net, gtld-servers.net and nstld.com
hosting the respective name servers. The de zone has NS depen-
dencies to nic.de and de.net. These are hosted by denic.de and
denic.net, with DENIC being the registrar for de. The bayern TLD
invokes a longer dependency chain with its direct name servers in
irondns.net. The name servers for irondns.net are within their
own zone as well as irondns.de. The name servers for irondns.de
are hosted by knipp.de and knipp. net. With IronDNS being a prod-
uct of Knipp?, there appears some organizational overlap that is not
visible within the SCC graph. Compared to, e.g. eu, which hosts its
name servers directly, bayern pulls in additional indirect dependen-
cies that can potentially influence the name resolution. The SCCs
provide a way to identify which zones belong together and help to
pinpoint the responsible dependencies.

3 APPROACH

To investigate how to reliably resolve a zone’s TCB, we developed a
custom resolver. This resolver creates an internal representation of
the discovered zone tree. Each zone has two primary purposes. In

Thttps://www.knipp.de/it-es/irondns?set-language=en

35

Johannes Naab, Patrick Sattler, Johannes Zirngibl, Stephan Giinther, and Georg Carle

the bootstrap process, the resolver reliably identifies the addresses
of the authoritative servers. After the authoritative servers have
been discovered, the zone processes queries as necessitated by the
inputs or by internal resolution requests. To ensure a consistent
view of the discovered zones, we delay queries within each zone
until the bootstrap process has been completed and all authoritative
servers have been discovered and validated. Queries are only re-
solved during the bootstrap process if they can directly or indirectly
affect the setup of the zone.

The resolver uses the following inputs: the preprocessed input
list, the root hints, and an exclusion list containing domains and net-
works. For each input domain, the resolver queries all authoritative
servers and saves the responses. Multiple domains are processed
concurrently. Queries necessary for the resolution itself (NS FQDNs)
are resolved internally while considering cyclic dependencies. The
queries and dependencies used by the internal resolution steps are
stored for further analysis.

We structure the resolution process as follows. Domains to be
queried are collected and preprocessed. The root zone file is used
to filter domains that are known not to exist. Zone file copies can
be used to enrich the query list. This can help to reduce the query
load against central zones (cf. Section 3.5.2).

3.1 Setup of a Zone within the Resolver

The candidates for authoritative servers are learned from

o glue records in the delegation discovered in the parent zone,

e internal resolution of the address records for NS names in the
delegation,

e internal resolution of the address records for NS records queried
against the authoritative servers,

e inherited authoritative servers of the parent if the delegation
query provided an authoritative answer, and

o for the root zone, the root hints as the safety belt.

For each candidate address, the SOA and NS records for the zone
apex are queried. SOA records should exist in common setups and
are recorded for later analysis. NS records are necessary to discover
all reachable authoritative server names and side-way delegations.
The candidate is accepted as authoritative server address for the
zone if any of these queries returns an authoritative answer. The
candidate server address is considered broken within the zone’s
context if no answer or a non-authoritative answer is returned. It
will no longer be queried within the zone’s context in this case.
Candidates can be learned from multiple sources and are processed
independently of how they were learned.

The internal address resolution of NS FQDNs can introduce cyclic
dependencies. The zone tracks the issued address resolution queries
in order to help determine the cyclic dependences. It keeps track of
the query progress and in which zone the query is processed.

Query requests received during the bootstrap process are queued.
The requesting zone is notified (scc wait) that the query is currently
on hold pending the completion of the zone setup. This is necessary
to facilitate the search for SCCs.

Once the SOA and NS records for the candidate name servers have
been processed and all tracked queries of the NS FQDNS are stuck in
the scc wait state or completed, a search for the cyclic dependencies

Gotta Query ’Em All, Again! Repeatable Name Resolution with Full Dependency Provenance

$ORIGIN tum.de. $ORIGIN de.
@ NS dns1.1lrz.de. # (1) tum NS dnsi1.1lrz.de.
@ NS dns2.1rz.bayern. # (1) tum NS dns2.1lrz.bayern.
@ NS dns3.1lrz.eu. # (1) tum NS dns3.1rz.eu.
lrz NS dnsl.1lrz.de.
lrz NS dns2.1lrz.bayern.
lrz NS dns3.1lrz.eu.

ANRW 23, July 22-28, 2023, San Francisco, CA, USA

$ORIGIN lrz.de.

(2) @ NS dns1.1lrz.de.

(2) @ NS dns2.1rz.bayern.

(2) @ NS dns3.1lrz.eu.

(4) dns1 A 129.187.19.183 # (3)

dns1.1rz A 129.187.19.183 # (5)

(a) tum.de config

(b) .de config

(c) Irz.de config

Figure 1: Simplified configuration of zones to resolve tum.de.

Figure 2: Dependency graph for tum.de as of 2023-05-10. Solid lines show NS dependencies, dashed lines the dependency on the
parent zone, dotted boxes the resulting SCCs. The figure omits the specific authoritative servers and address records.

is triggered. For this, we consider the dependency graph within the
known zones.

3.2 Strongly Connected Component Search

In our graph representation, zones are vertices. Internal queries to
resolve NS FQDNs pointing to the zone that it is processed in and the
dependency on the parent zone are directed edges. To detect cyclic
dependencies, we start a strongly connected component search.
The vertices (zones) considered during that search can be in the
following states:

e actively running: waiting on queries for SOA or NS against can-
didate name servers or waiting for status updates of address
resolution records.

e scc wait: address queries for NS FQDNS are stuck in another
zone.

o Jocally done: SOA and NS for the candidate name servers are
completed, the address queries for the NS FQDNs are pro-
visionally marked as done. The zone will not gain any new
authoritative server unless an address query gets updated.
Changes (falling back to the actively running state) are possi-
ble if new results for address queries are received.

e scc done: the zone is already completely set up and has been
assigned to an SCC.

36

Using Tarjan’s algorithm [13], SCCs are discovered in their re-
verse topological sort order. The discovered components always
start at the root zone. The SCC search is improved by pruning
zones that are already completely set up (scc done). Those are part
of previously discovered and finalized SCCs. The search is aborted
if a visited zone is in the actively running state. The first discovered
component (possibly a single zone) within this search iteration
contains either all locally done zones or at least one zone stuck in
the scc wait state. In case all zones in the discovered component are
locally done, we discovered a new SCC. The zones in the component
are notified, they switch into the scc done state, and start processing
queries.

If any zone in the discovered component is in the scc wait state, a
new cyclic dependency has been discovered. The queries spanning
this dependency cycle need to be processed even if the responsible
zone has not yet reached the scc done state. The zones involved in
the identified component are searched for stuck scc wait queries
originally requested by zones within the found SCC. These queries
are then processed even though the response zone is in the scc
wait or locally done state. Once such a query is resolved against the
known authoritative servers, the requesting zones are notified with
the query results. If a zone received the results for all NS FODNS,
it enters the locally done state and triggers a new search. Once all

ANRW 23, July 22-28, 2023, San Francisco, CA, USA

necessary dependencies have been discovered and dealt with, the
SCC search finalizes the component.

3.3 Deterministic Zone Cut Detection

In order to capture comprehensive and consistent information about
the DNS infrastructure and to reliably perform the SCC search, we
need to identify individual zones. We detect the zones by querying
the potential zone cuts. Every label in a FQDN is the location of a
potential zone cut. QNAME minimization [2, 3] offers an approach
to discover zone cuts. We adopt the QNAME minimization approach
with minor modifications.

We query SOA records because using A records [3] would hide the
zone cut in case the authoritative server is also authoritative for the
child zone. A NOERROR response is not enough to differentiate be-
tween a child zone and a name within the zone itself. The existence
of a SOA record at the child name is a strong indicator for a separate
child zone. Positive SOA responses can be reused during the zone’s
bootstrap process. NS queries [2] would also indicate a child zone.
During initial attempts we observed broken authoritative servers
that, when queried for NS, provided the delegation records in the
answer section (while it should have been in the authority section).

The left most label is assumed to be within the enclosing zone
(e.g. www.example.org is assumed to be within the example.org
zone and does not trigger explicit delegation discovery). In case the
answers to a query indicate a zone cut by a delegation response or by
existence of a matching SOA record in the authority section (NODATA,
the authoritative server is authoritative for the child zone as well),
the zone is explicitly set up. An exception is made for delegation-
centric zones, i.e., TLDs and country code second level domains such
as co. uk. These trigger SOA queries to discover potential delegations
first, even for full domains such as example.co.uk.

All authoritative servers in the respective zone are queried. For
the root zone and TLD zones this is further optimized to only query
a subset of authoritative servers as described in Section 3.5.1. If any
response indicates a delegation, an explicit child zone is set up by
the resolver.

To ensure a consistent view on the discovered zone cuts, two
additional details are taken into account. Different query types are
grouped together. If www. example.org is queried for A and AAAA, a
NODATA response for one of them could indicate a separate child
zone hosted on the same authoritative servers. In this case, all
query types for this name (here A and AAAA) are moved into the
newly discovered child zone. Furthermore, the decision on whether
to (initially) query directly within a given zone or to query for
zone cuts is made independently of the already known child zones.
foo.example.org will always be queried within example.org and
potentially be moved to the child zone even if due to a previous
query for bar. foo.example.org the child zone has already been dis-
covered. Both considerations are necessary to allow for differences
in order and timing of queries.

3.4 Network Interaction

Since our resolver queries all authoritative servers, it potentially
creates significantly more load than regular resolvers. We try to
minimize the impact this resolver has on the authoritative server in-
frastructure. By employing a per IP address rate limit (50 queries/s)

37

Johannes Naab, Patrick Sattler, Johannes Zirngibl, Stephan Giinther, and Georg Carle

and limiting the number of outstanding queries (100 queries), we
reduce the chance of negatively impacting any authoritative server.
Queries are retried up to 2 times (3 queries in total) with increas-
ing timeouts. Should an address be unresponsive for 250 consecu-
tive queries (excluding retries, at 50 queries/s this matches only 5
batches), the address is marked as unresponsive and will no longer
be queried during this run. Additionally, we rely on global rate
limits (24 k queries/s) and a limit for outstanding queries (12k) to
reduce the impact on the local infrastructure. The work queue, ie.,
all pending domains to be resolved, is limited to 128 k queries. In
combination with randomizing the query list itself, this should
avoid any hot spots on specific servers and smooths out the queries
against individual servers over the entire run. The resolver does not
send queries to any non-public IP addresses by default, and allows
to exclude specific domains, IP addresses, or networks by use of a
filter list. Queries are cached in the individual zones. Zones with
their queries expire after 5min of inactivity. The resolver sends
specific queries only to addresses for which a public resolution
path exists. It does not try to guess name servers or brute force
any queries. Name server operators should not see any strange or
misdirected queries.

3.5 Optimization for Query Efficiency

When setting up a child, the resolver queries all authoritative
servers in the enclosing zone to determine the delegation status.
Scans targeting distinct 2nd level domains trigger a SOA query for
each domain against every authoritative server in the TLD zone.
The . com zone is served by 26 authoritative servers. Each new 2nd
level domain would thus trigger 26 queries. This can lead to the
following problems: due to applying a per address query rate limit,
the entire resolution run would be delayed by these centralized
authoritative servers. A rate limit of 50 queries/s would prolong
the scanning of 1 M . com domains to 5.5 h. Increasing the rate limit
for specific addresses increases the risk of causing load spikes or
additional work load for the operators to investigate those queries.
We mitigate this problem in two ways: first by querying only a
subset of authoritative servers in the root and TLD zones, second
by using upstream zone data to skip querying those authoritative
servers for most domains.

3.5.1 Querying a subset of authoritative servers. We opportunisti-
cally assume that the servers authoritative for the root and TLD
zones are consistent within their zone and can thus reduce the
query load by using only a subset of authoritative servers. To select
this subset, the following requirements must be met: the queries
should be evenly distributed among the authoritative servers, and
the selection of the subset must be repeatable in order to support
deterministically re-running the resolver. For each child to be pro-
cessed, we order the authoritative servers by hashing the domain
name concatenated with the IP address of the authoritative server
(optionally including a per-run key). We use the first three authori-
tative servers. Deterministically picking the authoritative servers
allows us to re-run against the recorded data and make the same de-
cision the second time around. By picking at least two authoritative
servers, we can (over enough domains) discover inconsistencies
among the authoritative servers. This reduces the query load against

Gotta Query ’Em All, Again! Repeatable Name Resolution with Full Dependency Provenance

the . com authoritative servers to 3/26, or 38 min for 1M . com do-
mains at 50 queries/s. If the three responses are inconsistent or
indicate that at least one authoritative server is authoritative for
the child as well, all authoritative servers are queried.

This optimization is skipped if the delegation is queried during
zone bootstrap to complete a SCC. This is done to gain indepen-
dence on the order of when and how the authoritative servers are
discovered and to guarantee that the discovered SCCs are complete.

3.5.2 Injecting Zone Data into the Resolver. The query load against
large TLDs can be further reduced by injecting the zone data, e.g.
from CZDS [5], directly into the resolution process. This is achieved
by enriching the query list with the delegation and glue records as
given by the zone file. This assumes that the zone data is recent and
(in general) changes infrequently. If the zone apex records differ
from the injected data or otherwise indicate failures, the injected
data might be outdated. In such a case, the resolver additionally
queries the delegation using the parent zone’s authoritative servers
(while being subject to the subset selection in Section 3.5.12). Zones
set up using injected data are only used to resolve queries from the
input list. If the same query needs to be resolved within the context
of the resolver itself, i.e., address records to resolve NS FQDNs,
the zone set up by injected data is ignored. A copy of the zone
is set up using only actively queried data. This ensures that the
internal queries are explicitly available even if order, timings, or
inputs change. It also ensures that undetected but outdated data
only affects the queries as given by the input list and cannot impact
the SCC setup or indirectly dependent queries.

4 TESTING AND EVALUATION

To test the consistency and reliability of our implementation, we
need to execute it multiple times and compare the results. However,
the global DNS is not static and changes over time. Changes in
network conditions can impact repeated runs as well. Running in-
development versions repeatedly against the same infrastructure
increases the burden on servers.

We avoid these problems by building a tool called speedbag.
Figure 3 gives an architectural overview. Speedbag simulates au-
thoritative name servers by echoing previously saved responses
upon request. It relies on Linux network namespaces to emulate
name servers for an unmodified resolver. UDP responses are in-
jected by use of a tun device, TCP connections are handled by use of
the iptables DNAT target. On startup, speedbag reads the queries
recorded in a previous resolution run. It creates a lookup struc-
ture mapping (server ip, protocol, gname, qclass, qtype) to
(status, response data, response delay).

Upon receiving a query, the request is decoded and the response
is looked up. If a response is found, it is injected after the given
delay in a way that the resolver sees it as coming from the original
address. Should the previously recorded response indicate a timeout,
network error, or if no response is found at all, no response is
injected. Independent of the lookup outcome, the occurrence of the
query is recorded for later analysis.

During shutdown, the observed queries and known responses
are analyzed. In the optimal case, all observed queries are known,

2 An inconsistent apex does not imply an inconsistent/outdated delegation.

38

ANRW 23, July 22-28, 2023, San Francisco, CA, USA

Linux network name space

D »| speedbag > U

previous unknown queries,
query data unseen queries

simulated
name servers

tun, DNAT =——ps

UDP, TCP

[me—— ()

query data

Figure 3: Stand-alone name server simulation and resolver
testing architecture speedbag.

and all known responses are queried. If that is not the case, two
categories of discrepancies can be found. Seen queries without a
known response are unknown queries, known responses without
corresponding query are unqueried. Some discrepancies can be ac-
counted for if the resolution run used a different query list, deployed
an updated resolver, or changed the filter list. Other discrepancies
can be explained by inconsistent input data: if a query was executed
twice in the original dataset, i.e., due to cache expiration, and the
subsequent response differs from the initial response, speedbag will
always respond with the initial query data. This can have a knock
on effect on downstream name resolution.

In principle, speedbag can be applied to other resolver imple-
mentations. The data set used must contain the queries that can be
issued by the specific resolver. Some extensions can be made, e.g.
to synthesize delegation within a zone’s scope using the available
data.

4.1 Repeatability Verification

Investigating individual discrepancies can be time-consuming. There-
fore, we extended the testing procedure to automatically filter out
repeatable discrepancies. For this, we run the resolver thrice in the
speedbag environment as shown in Figure 4 — twice against the
Internet resolved data set and once against a speedbag resolved
data set. The verification of the resolution process uses the unknown
query and unqueried lists generated by speedbag. Both runs against
the Internet resolved data set (run #1, run #2) must be consistent,
i.e, result in the same unknown queries and unqueried queries. This
filters out explainable inconsistencies. The follow-up resolution
run against the speedbag resolved dataset (run #3) must now be
consistent with the input, i.e., it does not result in any unknown
queries or unqueried queries. The consistency goals can be achieved
even if non-functional parameters such as order of requests, rate
limits, or logging, are modified or updated.

4.2 Timeouts and Unresponsive Servers

The resolver detects unresponsive name servers based on con-
secutive timeouts. If an unresponsive server is detected, it is no
longer queried. The order in which the queries are sent is not fixed.
Speedbag cannot see the queries that the resolver completes inter-
nally due to unresponsiveness. Without specifically considering
timeouts and unresponsive name servers, the consistency checks
would always show some discrepancies based on differences in
order and timing.

ANRW 23, July 22-28, 2023, San Francisco, CA, USA

speedbag run #1 speedbag run #3

|, simulated |, simulated
name servers . name servers

—
unknown
unseen

unknown
unseen

5 |

query data

B

query data query data

Figure 4: Consistency validation of the resolution process
with three speedbag runs.

To mitigate these problems, we adapt both the resolver and
speedbag. In speedbag, the known queries (these include those
seen on the network as well as those internally generated by the
resolver) for each IP address are analyzed. If the address was, at
any point, marked as unresponsive during the original resolution,
speedbag marks it as such. In order to gain independence from
ordering, it does not respond to queries on this address even if they
might exist. Additionally, if the original resolution observed many
intermittent timeouts but never consistently enough to mark an
address as unresponsive, speedbag still marks it as such and does
not respond to any query at all. Queries seen for such servers are
neither accounted for in unknown queries nor as unqueried. The
resolver is updated to omit marking addresses as unresponsive
during the speedbag runs if it receives at least one non-timeout
answer. This allows the resolver to query unknown queries, e.g.
for functional updates, without impacting known queries by the
responsiveness check. To account for those unknown queries during
run #3, the filtering of addresses with many intermittent timeouts
is omitted. An address is considered responsive if at least one non-
timeout query is known. Unresponsive addresses were already
filtered in run #1.

5 RELATED WORK

Previous use cases: Ramasubramanian and Sirer [10] introduced
the concept of TCBs in the realm of DNS. They found numerous
authoritative servers inside the scanned domains’ TCB and showed
that 30 % have transitive relationships to vulnerable name servers.
However, these results from 2005 are not applicable to today’s
ecosystem. As their scanning methodology is not published, a com-
parison to our approach is not possible. Osterweil et al. [8] posed
the question of balancing between resilience, overhead and attack
surface. The availability and robustness implications in the depen-
dency graph are analyzed by Pappas et al. [9] and Deccio et al. [4].
Vissers et al. [16] analyzed the possibility of typo- and bitsquatting
cases. The TCB is not fully resolved, as we suggest. Instead, they
rely on information contained in zone files. Our approach enables a
structured analysis on the full TCB. Obtaining information on the
full TCB is also useful for determining whether a domain can be
resolved using only IPvé6. Streibelt et al. [12] implemented a version
of this full resolution, but it took more than four days to query 476 k
zones. We provide detailed explanations of our approach and are
able to resolve 1.67 M zones in 2.1 h. Recent studies by Li et al. [7],

39

Johannes Naab, Patrick Sattler, Johannes Zirngibl, Stephan Giinther, and Georg Carle

Akiwate et al. [1] and Sommese et al. [11] are examples where ex-
isting problems in the zone configuration and protocol deployment
have been found. Therefore, a consistent and reliable approach
to monitoring and scanning the entire TCB is a valuable tool for
detecting and analyzing such problems.

Existing Tools: Existing tools do not provide the full feature set
needed to fulfill our requirements. dig +trace shows the resolu-
tion path a resolver might take, but without examining the full
TCB. Similar, large-scale DNS resolution tools, such as ZDNS [6],
only mimic a typical resolver behavior. ZDNS does not yet sup-
port querying IPv6 name servers. Transitive Trust Checker [15]
uncovers the entire TCB but is limited to individual domains. Zhu
and Heidemann [17] provided a role model for our speedbag ap-
proach. They implemented a DNS resolver suitable for large scale
measurements and a replay tool that provides correct timing and
inter-arrival times. Existing DNS data collection efforts, e.g. Openln-
tel [14], only store the collected resource records but do not collect
the information to build a name’s TCB.

6 CONCLUSION

In this paper, we presented our approach to querying domain names
in a repeatable and consistent manner while uncovering their entire
dependency graph. This allows tracking internal dependencies and
structures of the DNS as well as detecting errors and misconfig-
urations. By identifying strongly connected components during
the resolution, we ensure that no hidden dependencies remain. Re-
running our implementation against recorded query data enables
us to validate our implementation and show that it is deterministic
and repeatable.

We want to further develop this approach to reliably study and
classify DNS setups. The data will allow us to investigate and quan-
tify specific misconfigurations.

EXAMPLE DATA SET

On https://tcb-resolve.github.io/ we provide the results for a scan
of 1.6 M with documentation of the result format. It includes the
speedbag validation runs.

The scan was executed in May 2023. The domains are sourced
from the Alexa Top 1M and the Majestic Million lists. The scan
queried the A, AAAA, CAA, MX and TXT records. Plausible www subdo-
mains have been queried for A and AAAA. The resolution took 2.1h
and issued 118 M queries in 1.67 M zones against 254 k addresses.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for
their valuable feedback. This work was partially funded by the
German Federal Ministry of Education and Research under the
project PRIMEnet (16KIS1370), 6G-life (16KISK002) and 6G-ANNA
(16KISK107) as well as the German Research Foundation (Hyper-
NIC, grant no. CA595/13-1). Additionally, we received funding by
the Bavarian Ministry of Economic Affairs, Regional Development
and Energy as part of the project 6G Future Lab Bavaria and the
European Union’s Horizon 2020 research and innovation program
(grant agreement no. 101008468 and 101079774).

https://tcb-resolve.github.io/

Gotta Query ’Em All, Again! Repeatable Name Resolution with Full Dependency Provenance

REFERENCES

[1] Gautam Akiwate, Mattijs Jonker, Raffacle Sommese, Ian Foster, Geoffrey M.

Voelker, Stefan Savage, and KC Clafty. 2020. Unresolved Issues: Prevalence,
Persistence, and Perils of Lame Delegations. In Proc. ACM Int. Measurement
Conference (IMC) (Virtual Event, USA) (IMC ’20). Association for Computing
Machinery. https://doi.org/10.1145/3419394.3423623

Stéphane Bortzmeyer. 2016. DNS Query Name Minimisation to Improve Privacy.
RFC 7816. https://doi.org/10.17487/RFC7816

Stéphane Bortzmeyer, Ralph Dolmans, and Paul E. Hoffman. 2021. DNS Query
Name Minimisation to Improve Privacy. RFC 9156. https://doi.org/10.17487/
RFC9156

Casey Deccio, Jeff Sedayao, Krishna Kant, and Prasant Mohapatra. 2010. Mea-
suring Availability in the Domain Name System. In Proc. IEEE Int. Conference on
Computer Communications (INFOCOM). IEEE.

Internet Corporation for Assigned Names and Numbers. [n.d.]. Centralized Zone
Data Service. https://czds.icann.org/home

Liz Izhikevich, Gautam Akiwate, Briana Berger, Spencer Drakontaidis, Anna
Ascheman, Paul Pearce, David Adrian, and Zakir Durumeric. 2022. ZDNS: A
Fast DNS Toolkit for Internet Measurement. In Proc. ACM Int. Measurement
Conference (IMC) (Nice, France) (IMC °22). Association for Computing Machinery.
https://doi.org/10.1145/3517745.3561434

Xiang Li, Baojun Liu, Xuesong Bai, Mingming Zhang, Qifan Zhang, Zhou Li,
Haixin Duan, and Qi Li. 2023. Ghost Domain Reloaded: Vulnerable Links in
Domain Name Delegation and Revocation. In Proc. Network and Distributed
System Security Symposium (NDSS). Internet Society, San Diego, CA, USA. https:
//doi.org/10.14722/ndss.2023.23005

Eric Osterweil, Danny McPherson, and Lixia Zhang. 2011. Operational Implica-
tions of the DNS Control Plane. IEEE Reliability Society Newsletter (2011).

40

ANRW 23, July 22-28, 2023, San Francisco, CA, USA

[9] Vasileios Pappas, Zhiguo Xu, Songwu Lu, Daniel Massey, Andreas Terzis, and

[10

[11

Lixia Zhang. 2004. Impact of Configuration Errors on DNS Robustness. In Proc.
ACM SIGCOMM.

Venugopalan Ramasubramanian and Emin Giin Sirer. 2005. Perils of Transitive
Trust in the Domain Name System. In Proceedings of the 5th ACM SIGCOMM Con-
ference on Internet Measurement (Berkeley, CA) (IMC 05). USENIX Association,
USA.

Raffaele Sommese, Giovane C. M. Moura, Mattijs Jonker, Roland van Rijswijk-
Deij, Alberto Dainotti, K. C. Claffy, and Anna Sperotto. 2020. When Parents and
Children Disagree: Diving into DNS Delegation Inconsistency. In Proc. Passive
and Active Measurement (PAM).

Florian Streibelt, Patrick Sattler, Franziska Lichtblau, Carlos H. Gafian, Anja
Feldmann, Oliver Gasser, and Tobias Fiebig. 2023. How Ready is DNS for an IPv6-
Only World?. In Proc. Passive and Active Measurement (PAM), Anna Brunstrom,
Marcel Flores, and Marco Fiore (Eds.). Springer Nature Switzerland.

Robert Tarjan. 1972. Depth-First Search and Linear Graph Algorithms. SIAM 7.
Comput. 1, 2 (1972). https://doi.org/10.1137/0201010

Roland van Rijswijk-Deij, Mattijs Jonker, Anna Sperotto, and Aiko Pras. 2016. A
High-Performance, Scalable Infrastructure for Large-Scale Active DNS Mea-
surements. IEEE Journal on Selected Areas in Communications 34, 6 (2016).
https://doi.org/10.1109/JSAC.2016.2558918

Verisign. [n.d.]. Transitive Trust Checker. https://trans-trust.verisignlabs.com/
Thomas Vissers, Timothy Barron, Tom Van Goethem, Wouter Joosen, and Nick
Nikiforakis. 2017. The Wolf of Name Street: Hijacking Domains Through Their
Nameservers. In Proc. ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS) (Dallas, Texas, USA) (CCS ’17). Association for Computing
Machinery. https://doi.org/10.1145/3133956.3133988

Liang Zhu and John Heidemann. 2018. LDplayer: DNS Experimentation at Scale.
In Proc. ACM Int. Measurement Conference (IMC) (Boston, MA, USA) (IMC ’18).
Association for Computing Machinery. https://doi.org/10.1145/3278532.3278544

https://doi.org/10.1145/3419394.3423623
https://doi.org/10.17487/RFC7816
https://doi.org/10.17487/RFC9156
https://doi.org/10.17487/RFC9156
https://czds.icann.org/home
https://doi.org/10.1145/3517745.3561434
https://doi.org/10.14722/ndss.2023.23005
https://doi.org/10.14722/ndss.2023.23005
https://doi.org/10.1137/0201010
https://doi.org/10.1109/JSAC.2016.2558918
https://trans-trust.verisignlabs.com/
https://doi.org/10.1145/3133956.3133988
https://doi.org/10.1145/3278532.3278544

	Abstract
	1 Introduction
	2 Background
	3 Approach
	3.1 Setup of a Zone within the Resolver
	3.2 Strongly Connected Component Search
	3.3 Deterministic Zone Cut Detection
	3.4 Network Interaction
	3.5 Optimization for Query Efficiency

	4 Testing and Evaluation
	4.1 Repeatability Verification
	4.2 Timeouts and Unresponsive Servers

	5 Related Work
	6 Conclusion
	References

